Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38187759

ABSTRACT

Aging is accompanied by multiple molecular changes that contribute to aging-associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part because mitochondria are central to cellular metabolism. Moreover, the co-factor NAD+, which is reported to decline across multiple tissue types during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids. To further characterize how tissue metabolism changes with age, we intravenously infused [U-13C]-glucose into young and old C57BL/6J, WSB/EiJ, and Diversity Outbred mice to trace glucose fate into downstream metabolites within plasma, liver, gastrocnemius muscle, and brain tissues. We found that glucose incorporation into central carbon and amino acid metabolism was robust during healthy aging across these different strains of mice. We also observed that levels of NAD+, NADH, and the NAD+/NADH ratio were unchanged in these tissues with healthy aging. However, aging tissues, particularly brain, exhibited evidence of up-regulated fatty acid and sphingolipid metabolism reactions that regenerate NAD+ from NADH. Because mitochondrial respiration, a major source of NAD+ regeneration, is reported to decline with age, our data supports a model where NAD+-generating lipid metabolism reactions may buffer against changes in NAD+/NADH during healthy aging.

2.
Sci Adv ; 8(3): eabg6383, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35061540

ABSTRACT

Access to electron acceptors supports oxidized biomass synthesis and can be limiting for cancer cell proliferation, but how cancer cells overcome this limitation in tumors is incompletely understood. Nontransformed cells in tumors can help cancer cells overcome metabolic limitations, particularly in pancreatic cancer, where pancreatic stellate cells (PSCs) promote cancer cell proliferation and tumor growth. However, whether PSCs affect the redox state of cancer cells is not known. By taking advantage of the endogenous fluorescence properties of reduced nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide cofactors we use optical imaging to assess the redox state of pancreatic cancer cells and PSCs and find that direct interactions between PSCs and cancer cells promote a more oxidized state in cancer cells. This suggests that metabolic interaction between cancer cells and PSCs is a mechanism to overcome the redox limitations of cell proliferation in pancreatic cancer.


Subject(s)
Pancreatic Neoplasms , Pancreatic Stellate Cells , Cell Line, Tumor , Humans , Oxidation-Reduction , Pancreatic Neoplasms/pathology , Pancreatic Stellate Cells/metabolism , Stromal Cells , Pancreatic Neoplasms
3.
Nature ; 599(7884): 302-307, 2021 11.
Article in English | MEDLINE | ID: mdl-34671163

ABSTRACT

Dietary interventions can change metabolite levels in the tumour microenvironment, which might then affect cancer cell metabolism to alter tumour growth1-5. Although caloric restriction (CR) and a ketogenic diet (KD) are often thought to limit tumour progression by lowering blood glucose and insulin levels6-8, we found that only CR inhibits the growth of select tumour allografts in mice, suggesting that other mechanisms contribute to tumour growth inhibition. A change in nutrient availability observed with CR, but not with KD, is lower lipid levels in the plasma and tumours. Upregulation of stearoyl-CoA desaturase (SCD), which synthesises monounsaturated fatty acids, is required for cancer cells to proliferate in a lipid-depleted environment, and CR also impairs tumour SCD activity to cause an imbalance between unsaturated and saturated fatty acids to slow tumour growth. Enforcing cancer cell SCD expression or raising circulating lipid levels through a higher-fat CR diet confers resistance to the effects of CR. By contrast, although KD also impairs tumour SCD activity, KD-driven increases in lipid availability maintain the unsaturated to saturated fatty acid ratios in tumours, and changing the KD fat composition to increase tumour saturated fatty acid levels cooperates with decreased tumour SCD activity to slow tumour growth. These data suggest that diet-induced mismatches between tumour fatty acid desaturation activity and the availability of specific fatty acid species determine whether low glycaemic diets impair tumour growth.


Subject(s)
Blood Glucose/metabolism , Diet, Carbohydrate-Restricted , Fatty Acids/metabolism , Lipid Metabolism , Neoplasms/metabolism , Neoplasms/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Allografts , Animals , Caloric Restriction , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation , Diet, Ketogenic , Extracellular Fluid/chemistry , Fatty Acids, Unsaturated/metabolism , Female , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Nutrients/analysis , Nutrients/blood , Stearoyl-CoA Desaturase/metabolism , Tumor Microenvironment/drug effects
4.
Nat Commun ; 12(1): 2328, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33879793

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a collagen-rich dense extracellular matrix (ECM) that promotes malignancy of cancer cells and presents a barrier for drug delivery. Data analysis of our published mass spectrometry (MS)-based studies on enriched ECM from samples of progressive PDAC stages reveal that the C-terminal prodomains of fibrillar collagens are partially uncleaved in PDAC ECM, suggesting reduced procollagen C-proteinase activity. We further show that the enzyme responsible for procollagen C-proteinase activity, bone morphogenetic protein1 (BMP1), selectively suppresses tumor growth and metastasis in cells expressing high levels of COL1A1. Although BMP1, as a secreted proteinase, promotes fibrillar collagen deposition from both cancer cells and stromal cells, only cancer-cell-derived procollagen cleavage and deposition suppresses tumor malignancy. These studies reveal a role for cancer-cell-derived fibrillar collagen in selectively restraining tumor growth and suggest stratification of patients based on their tumor epithelial collagen I expression when considering treatments related to perturbation of fibrillar collagens.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Fibrillar Collagens/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Animals , Bone Morphogenetic Protein 1/metabolism , Carcinoma, Pancreatic Ductal/secondary , Cell Line, Tumor , Collagen Type I/chemistry , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Disease Progression , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Fibrillar Collagens/chemistry , Fibrillar Collagens/genetics , Humans , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mutagenesis , Pancreatic Neoplasms/genetics , Procollagen/chemistry , Procollagen/genetics , Procollagen/metabolism , Protein Domains , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Cancer Discov ; 11(2): 446-479, 2021 02.
Article in English | MEDLINE | ID: mdl-33127842

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year survival rate and lacks effective therapeutics. Therefore, it is of paramount importance to identify new targets. Using multiplex data from patient tissue, three-dimensional coculturing in vitro assays, and orthotopic murine models, we identified Netrin G1 (NetG1) as a promoter of PDAC tumorigenesis. We found that NetG1+ cancer-associated fibroblasts (CAF) support PDAC survival, through a NetG1-mediated effect on glutamate/glutamine metabolism. Also, NetG1+ CAFs are intrinsically immunosuppressive and inhibit natural killer cell-mediated killing of tumor cells. These protumor functions are controlled by a signaling circuit downstream of NetG1, which is comprised of AKT/4E-BP1, p38/FRA1, vesicular glutamate transporter 1, and glutamine synthetase. Finally, blocking NetG1 with a neutralizing antibody stunts in vivo tumorigenesis, suggesting NetG1 as potential target in PDAC. SIGNIFICANCE: This study demonstrates the feasibility of targeting a fibroblastic protein, NetG1, which can limit PDAC tumorigenesis in vivo by reverting the protumorigenic properties of CAFs. Moreover, inhibition of metabolic proteins in CAFs altered their immunosuppressive capacity, linking metabolism with immunomodulatory function.See related commentary by Sherman, p. 230.This article is highlighted in the In This Issue feature, p. 211.


Subject(s)
Adenocarcinoma/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Netrins/metabolism , Pancreatic Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Humans , Immunosuppression Therapy , Nutritional Support , Tumor Microenvironment
6.
Elife ; 92020 07 10.
Article in English | MEDLINE | ID: mdl-32648540

ABSTRACT

Tumors are composed of many different cell types including cancer cells, fibroblasts, and immune cells. Dissecting functional metabolic differences between cell types within a mixed population can be challenging due to the rapid turnover of metabolites relative to the time needed to isolate cells. To overcome this challenge, we traced isotope-labeled nutrients into macromolecules that turn over more slowly than metabolites. This approach was used to assess differences between cancer cell and fibroblast metabolism in murine pancreatic cancer organoid-fibroblast co-cultures and tumors. Pancreatic cancer cells exhibited increased pyruvate carboxylation relative to fibroblasts, and this flux depended on both pyruvate carboxylase and malic enzyme 1 activity. Consequently, expression of both enzymes in cancer cells was necessary for organoid and tumor growth, demonstrating that dissecting the metabolism of specific cell populations within heterogeneous systems can identify dependencies that may not be evident from studying isolated cells in culture or bulk tissue.


Tumors contain a mixture of many different types of cells, including cancer cells and non-cancer cells. The interactions between these two groups of cells affect how the cancer cells use nutrients, which, in turn, affects how fast these cells grow and divide. Furthermore, different cell types may use nutrients in diverse ways to make other molecules ­ known as metabolites ­ that the cell needs to survive. Fibroblasts are a subset of non-cancer cells that are typically found in tumors and can help them form. Separating fibroblasts from cancer cells in a tumor takes a lot longer than the chemical reactions in each cell of the tumor that produce and use up nutrients, also known as the cell's metabolism. Therefore, measuring the levels of glucose (the sugar that is the main energy source for cells) and other metabolites in each tumor cell after separating them does not necessarily provide accurate information about the tumor cell's metabolism. This makes it difficult to study how cancer cells and fibroblasts use nutrients differently. Lau et al. have developed a strategy to study the metabolism of cancer cells and fibroblasts in tumors. Mice with tumors in their pancreas were provided glucose that had been labelled using biochemical techniques. As expected, when the cell processed the glucose, the label was transferred into metabolites that got used up very quickly. But the label also became incorporated into larger, more stable molecules, such as proteins. Unlike the small metabolites, these larger molecules do not change in the time it takes to separate the cancer cells from the fibroblasts. Lau et al. sorted cells from whole pancreatic tumors and analyzed large, stable molecules that can incorporate the label from glucose in cancer cells and fibroblasts. The experiments showed that, in cancer cells, these molecules were more likely to have labeling patterns that are characteristic of two specific enzymes called pyruvate carboxylase and malic enzyme 1. This suggests that these enzymes are more active in cancer cells. Lau et al. also found that pancreatic cancer cells needed these two enzymes to metabolize glucose and to grow into large tumors. Pancreatic cancer is one of the most lethal cancers and current therapies offer limited benefit to many patients. Therefore, it is important to develop new drugs to treat this disease. Understanding how cancer cells and non-cancer cells in pancreatic tumors use nutrients differently is important for developing drugs that only target cancer cells.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Tumor Microenvironment/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL
7.
Cancer Res ; 79(22): 5723-5733, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31484670

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer deaths in the United States. The deoxynucleoside analogue gemcitabine is among the most effective therapies to treat PDAC, however, nearly all patients treated with gemcitabine either fail to respond or rapidly develop resistance. One hallmark of PDAC is a striking accumulation of stromal tissue surrounding the tumor, and this accumulation of stroma can contribute to therapy resistance. To better understand how stroma limits response to therapy, we investigated cell-extrinsic mechanisms of resistance to gemcitabine. Conditioned media from pancreatic stellate cells (PSC), as well as from other fibroblasts, protected PDAC cells from gemcitabine toxicity. The protective effect of PSC-conditioned media was mediated by secretion of deoxycytidine, but not other deoxynucleosides, through equilibrative nucleoside transporters. Deoxycytidine inhibited the processing of gemcitabine in PDAC cells, thus reducing the effect of gemcitabine and other nucleoside analogues on cancer cells. These results suggest that reducing deoxycytidine production in PSCs may increase the efficacy of nucleoside analog therapies. SIGNIFICANCE: This study provides important new insight into mechanisms that contribute to gemcitabine resistance in PDAC and suggests new avenues for improving gemcitabine efficacy.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Drug Resistance, Neoplasm/drug effects , Pancreatic Stellate Cells/drug effects , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Cell Line, Tumor , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/drug therapy , Xenograft Model Antitumor Assays/methods , Gemcitabine , Pancreatic Neoplasms
8.
BMC Cancer ; 19(1): 723, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31331318

ABSTRACT

BACKGROUND: Copy number gain of the D-3-phosphoglycerate dehydrogenase (PHGDH) gene, which encodes the first enzyme in serine biosynthesis, is found in some human cancers including a subset of melanomas. METHODS: In order to study the effect of increased PHGDH expression in tissues in vivo, we generated mice harboring a PHGDHtetO allele that allows tissue-specific, doxycycline-inducible PHGDH expression, and we analyzed the phenotype of mice with a ubiquitous increase in PHGDH expression. RESULTS: Tissues and cells derived from PHGDHtetO mice exhibit increased serine biosynthesis. Histological examination of skin tissue from PHGDHtetO mice reveals the presence of melanin granules in early anagen hair follicles, despite the fact that melanin synthesis is closely coupled to the hair follicle cycle and does not normally begin until later in the cycle. This phenotype occurs in the absence of any global change in hair follicle cycle timing. The aberrant presence of melanin early in the hair follicle cycle following PHGDH expression is also accompanied by increased melanocyte abundance in early anagen skin. CONCLUSIONS: These data suggest increased PHGDH expression impacts normal melanocyte biology, but PHGDH expression alone is not sufficient to cause cancer.


Subject(s)
Gene Expression , Melanins/metabolism , Phosphoglycerate Dehydrogenase/genetics , Alleles , Animals , Cell Line , Doxycycline/pharmacology , Hair Follicle/physiology , Humans , Melanocytes/metabolism , Melanoma/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Serine/biosynthesis , Skin/metabolism , Skin Neoplasms/metabolism
9.
Immunity ; 50(5): 1129-1131, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31117009

ABSTRACT

Metabolic changes affect T lymphocyte function, and understanding this phenomenon could improve immunotherapy. In a recent paper in Science, Vodnala et al. (2019) report that tumor microenvironmental potassium impairs T cell nutrient uptake and thus causes functional caloric restriction and allows improved anti-tumor immune responses.


Subject(s)
Killer Cells, Natural , Neoplasms , Humans , Immunotherapy , T-Lymphocytes , Tumor Microenvironment
10.
Cancer Metab ; 6: 17, 2018.
Article in English | MEDLINE | ID: mdl-30386596

ABSTRACT

BACKGROUND: While most cancer cells preferentially express the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2), PKM2 is dispensable for tumor development in several mouse cancer models. PKM2 is expressed in human pancreatic cancer, and there have been conflicting reports on the association of PKM2 expression and pancreatic cancer patient survival, but whether PKM2 is required for pancreatic cancer progression is unknown. To investigate the role of PKM2 in pancreatic cancer, we used a conditional allele to delete PKM2 in a mouse model of pancreatic ductal adenocarcinoma (PDAC). RESULTS: PDAC tumors were initiated in LSL-Kras G12D/+ ;Trp53 flox/flox ;Pdx-1-Cre (KP-/-C) mice harboring a conditional Pkm2 allele. Immunohistochemical analysis showed PKM2 expression in wild-type tumors and loss of PKM2 expression in tumors from Pkm2 conditional mice. PKM2 deletion had no effect on overall survival or tumor size. Loss of PKM2 resulted in pyruvate kinase M1 (PKM1) expression, but did not affect the number of proliferating cells. These findings are consistent with results in other cancer models. CONCLUSIONS: PKM2 is not required for initiation or growth of PDAC tumors arising in the KP-/-C pancreatic cancer model. These findings suggest that, in this mouse PDAC model, PKM2 expression is not required for pancreatic tumor formation or progression.

12.
Cell Metab ; 28(5): 706-720.e6, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30122555

ABSTRACT

Mitochondrial function is important for aspartate biosynthesis in proliferating cells. Here, we show that mitochondrial aspartate export via the aspartate-glutamate carrier 1 (AGC1) supports cell proliferation and cellular redox homeostasis. Insufficient cytosolic aspartate delivery leads to cell death when TCA cycle carbon is reduced following glutamine withdrawal and/or glutaminase inhibition. Moreover, loss of AGC1 reduces allograft tumor growth that is further compromised by treatment with the glutaminase inhibitor CB-839. Together, these findings argue that mitochondrial aspartate export sustains cell survival in low-glutamine environments and AGC1 inhibition can synergize with glutaminase inhibition to limit tumor growth.


Subject(s)
Amino Acid Transport Systems, Acidic/metabolism , Antiporters/metabolism , Aspartic Acid/metabolism , Cell Survival , Cytosol/metabolism , Glutamine/metabolism , Animals , Cell Line , Cell Proliferation , Citric Acid Cycle , Female , Humans , Mice, Inbred C57BL , Mitochondria/metabolism , Neoplasms/metabolism
13.
Nat Cell Biol ; 20(7): 782-788, 2018 07.
Article in English | MEDLINE | ID: mdl-29941931

ABSTRACT

Defining the metabolic limitations of tumour growth will help to develop cancer therapies1. Cancer cells proliferate slower in tumours than in standard culture conditions, indicating that a metabolic limitation may restrict cell proliferation in vivo. Aspartate synthesis can limit cancer cell proliferation when respiration is impaired2-4; however, whether acquiring aspartate is endogenously limiting for tumour growth is unknown. We confirm that aspartate has poor cell permeability, which prevents environmental acquisition, whereas the related amino acid asparagine is available to cells in tumours, but cancer cells lack asparaginase activity to convert asparagine to aspartate. Heterologous expression of guinea pig asparaginase 1 (gpASNase1), an enzyme that produces aspartate from asparagine5, confers the ability to use asparagine to supply intracellular aspartate to cancer cells in vivo. Tumours expressing gpASNase1 grow at a faster rate, indicating that aspartate acquisition is an endogenous metabolic limitation for the growth of some tumours. Tumours expressing gpASNase1 are also refractory to the growth suppressive effects of metformin, suggesting that metformin inhibits tumour growth by depleting aspartate. These findings suggest that therapeutic aspartate suppression could be effective to treat cancer.


Subject(s)
Aspartic Acid/metabolism , Cell Proliferation , Energy Metabolism , Neoplasms/metabolism , Animals , Antineoplastic Agents/pharmacology , Asparaginase/genetics , Asparaginase/metabolism , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Guinea Pigs , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Male , Metabolomics/methods , Metformin/pharmacology , Mice, Nude , Mice, Transgenic , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction , Time Factors , Tumor Burden , Tumor Microenvironment , Xenograft Model Antitumor Assays
14.
Nature ; 558(7711): 600-604, 2018 06.
Article in English | MEDLINE | ID: mdl-29925948

ABSTRACT

Malignancy is accompanied by changes in the metabolism of both cells and the organism1,2. Pancreatic ductal adenocarcinoma (PDAC) is associated with wasting of peripheral tissues, a metabolic syndrome that lowers quality of life and has been proposed to decrease survival of patients with cancer3,4. Tissue wasting is a multifactorial disease and targeting specific circulating factors to reverse this syndrome has been mostly ineffective in the clinic5,6. Here we show that loss of both adipose and muscle tissue occurs early in the development of pancreatic cancer. Using mouse models of PDAC, we show that tumour growth in the pancreas but not in other sites leads to adipose tissue wasting, suggesting that tumour growth within the pancreatic environment contributes to this wasting phenotype. We find that decreased exocrine pancreatic function is a driver of adipose tissue loss and that replacement of pancreatic enzymes attenuates PDAC-associated wasting of peripheral tissues. Paradoxically, reversal of adipose tissue loss impairs survival in mice with PDAC. When analysing patients with PDAC, we find that depletion of adipose and skeletal muscle tissues at the time of diagnosis is common, but is not associated with worse survival. Taken together, these results provide an explanation for wasting of adipose tissue in early PDAC and suggest that early loss of peripheral tissue associated with pancreatic cancer may not impair survival.


Subject(s)
Adipose Tissue/metabolism , Adipose Tissue/pathology , Exocrine Pancreatic Insufficiency/etiology , Exocrine Pancreatic Insufficiency/metabolism , Pancreatic Neoplasms/complications , Pancreatic Neoplasms/pathology , Animals , Body Composition , Disease Models, Animal , Disease Progression , Exocrine Pancreatic Insufficiency/pathology , Female , Male , Mice , Pancreatic Neoplasms/metabolism
15.
J Clin Invest ; 128(2): 789-804, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29355841

ABSTRACT

Patients with myeloproliferative neoplasms (MPNs) frequently progress to bone marrow failure or acute myeloid leukemia (AML), and mutations in epigenetic regulators such as the metabolic enzyme isocitrate dehydrogenase (IDH) are associated with poor outcomes. Here, we showed that combined expression of Jak2V617F and mutant IDH1R132H or Idh2R140Q induces MPN progression, alters stem/progenitor cell function, and impairs differentiation in mice. Jak2V617F Idh2R140Q-mutant MPNs were sensitive to small-molecule inhibition of IDH. Combined inhibition of JAK2 and IDH2 normalized the stem and progenitor cell compartments in the murine model and reduced disease burden to a greater extent than was seen with JAK inhibition alone. In addition, combined JAK2 and IDH2 inhibitor treatment also reversed aberrant gene expression in MPN stem cells and reversed the metabolite perturbations induced by concurrent JAK2 and IDH2 mutations. Combined JAK2 and IDH2 inhibitor therapy also showed cooperative efficacy in cells from MPN patients with both JAK2mut and IDH2mut mutations. Taken together, these data suggest that combined JAK and IDH inhibition may offer a therapeutic advantage in this high-risk MPN subtype.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Isocitrate Dehydrogenase/genetics , Janus Kinase 2/genetics , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Aged , Animals , Disease Progression , Epigenesis, Genetic , Female , Gene Expression Profiling , Humans , Male , Mice , Mice, Mutant Strains , Mice, Transgenic , Middle Aged , Mutation , Phenotype , Stem Cells
16.
Cancer Metab ; 5: 10, 2017.
Article in English | MEDLINE | ID: mdl-29214019

ABSTRACT

BACKGROUND: Cancer cells express the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2). PKM2 expression is not required for some cancers, and PKM2 loss can promote cancer progression; however, PKM2 has been reported to be essential in other tumor contexts, including a proposed non-metabolic role in ß-catenin nuclear translocation. PKM2 is expressed in colon cancers where loss of the Apc tumor suppressor results in ß-catenin nuclear translocation and aberrant activation of the canonical Wnt signaling pathway. Whether PKM2 is required in this colon cancer context has not been investigated. RESULTS: Colon tumorigenesis was induced in mice harboring conditional Apc and Pkm2 alleles, and tumor progression was monitored by serial colonoscopy. PKM2 deletion had no effect on overall survival, the number of mice that developed tumors, or the number of tumors that developed per animal. Immunohistochemical analysis demonstrated PKM2 expression in wild-type tumors and the expected loss of PKM2 expression in tumors from Pkm2 conditional mice. Loss of PKM2 resulted in pyruvate kinase M1 expression but had no effect on nuclear ß-catenin staining. These findings are consistent with tumor growth and activated Wnt signaling despite PKM2 loss in this model. We also found a large fraction of human colon cancers had very low or undetectable levels of PKM2 expression. CONCLUSIONS: PKM2 is not required for Apc-deficient colon cancer or for nuclear translocation of ß-catenin in Apc-null tumor cells. These findings suggest that PKM2 expression is not required for colon tumor formation or progression.

17.
Science ; 353(6304): 1161-5, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27609895

ABSTRACT

Tumor genetics guides patient selection for many new therapies, and cell culture studies have demonstrated that specific mutations can promote metabolic phenotypes. However, whether tissue context defines cancer dependence on specific metabolic pathways is unknown. Kras activation and Trp53 deletion in the pancreas or the lung result in pancreatic ductal adenocarinoma (PDAC) or non-small cell lung carcinoma (NSCLC), respectively, but despite the same initiating events, these tumors use branched-chain amino acids (BCAAs) differently. NSCLC tumors incorporate free BCAAs into tissue protein and use BCAAs as a nitrogen source, whereas PDAC tumors have decreased BCAA uptake. These differences are reflected in expression levels of BCAA catabolic enzymes in both mice and humans. Loss of Bcat1 and Bcat2, the enzymes responsible for BCAA use, impairs NSCLC tumor formation, but these enzymes are not required for PDAC tumor formation, arguing that tissue of origin is an important determinant of how cancers satisfy their metabolic requirements.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Gene Expression Regulation, Neoplastic , Humans , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , Minor Histocompatibility Antigens/genetics , Mutation , Nitrogen/metabolism , Organ Specificity , Pregnancy Proteins/genetics , Transaminases/genetics
18.
Mol Cell ; 60(4): 511-3, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26590710

ABSTRACT

In a recent paper in Cell Metabolism, Altman et al. (2015) report that MYC disrupts the molecular clock in cancer cells and describe a link between oncogenesis, circadian rhythms, and metabolism.


Subject(s)
Circadian Clocks , Circadian Rhythm , Humans
19.
Proc Natl Acad Sci U S A ; 111(28): 10299-304, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24982195

ABSTRACT

Lung cancer is notorious for its ability to metastasize, but the pathways regulating lung cancer metastasis are largely unknown. An in vitro system designed to discover factors critical for lung cancer cell migration identified brain-derived neurotrophic factor, which stimulates cell migration through activation of tropomyosin-related kinase B (TrkB; also called NTRK2). Knockdown of TrkB in human lung cancer cell lines significantly decreased their migratory and metastatic ability in vitro and in vivo. In an autochthonous lung adenocarcinoma model driven by activated oncogenic Kras and p53 loss, TrkB deficiency significantly reduced metastasis. Hypoxia-inducible factor-1 directly regulated TrkB expression, and, in turn, TrkB activated Akt signaling in metastatic lung cancer cells. Finally, TrkB expression was correlated with metastasis in patient samples, and TrkB was detected more often in tumors that did not have Kras or epidermal growth factor receptor mutations. These studies demonstrate that TrkB is an important therapeutic target in metastatic lung adenocarcinoma.


Subject(s)
Adenocarcinoma/enzymology , Cell Movement , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Lung Neoplasms/enzymology , Membrane Glycoproteins/biosynthesis , Protein-Tyrosine Kinases/biosynthesis , Receptor, trkB/biosynthesis , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Cell Line, Tumor , Gene Knockdown Techniques , Humans , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Membrane Glycoproteins/genetics , Mice, Mutant Strains , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptor, trkB/genetics , Signal Transduction/genetics
20.
EMBO J ; 33(5): 468-81, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24497554

ABSTRACT

Metastasis is the leading cause of morbidity for lung cancer patients. Here we demonstrate that murine tumor propagating cells (TPCs) with the markers Sca1 and CD24 are enriched for metastatic potential in orthotopic transplantation assays. CD24 knockdown decreased the metastatic potential of lung cancer cell lines resembling TPCs. In lung cancer patient data sets, metastatic spread and patient survival could be stratified with a murine lung TPC gene signature. The TPC signature was enriched for genes in the Hippo signaling pathway. Knockdown of the Hippo mediators Yap1 or Taz decreased in vitro cellular migration and transplantation of metastatic disease. Furthermore, constitutively active Yap was sufficient to drive lung tumor progression in vivo. These results demonstrate functional roles for two different pathways, CD24-dependent and Yap/Taz-dependent pathways, in lung tumor propagation and metastasis. This study demonstrates the utility of TPCs for identifying molecules contributing to metastatic lung cancer, potentially enabling the therapeutic targeting of this devastating disease.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Movement , Lung Neoplasms/pathology , Neoplasm Metastasis/pathology , Phosphoproteins/metabolism , Transcription Factors/metabolism , Acyltransferases , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Cycle Proteins , Disease Models, Animal , Gene Knockdown Techniques , Humans , Lung/pathology , Mice , Phosphoproteins/genetics , Transcription Factors/genetics , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...